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A numerical  method is described for the calculation of supersonic flow over  the a rb i t ra ry  up- 
per surface of a delta wing in the expansion region. The shock wave must  be attached every-  
where to the leading edge of this wing from the side of the lower surface.  The s t ream flowing 
over  the wing is assumed to be nonviscous. A problem with initial conditions at some plane 
and with boundary conditions at the wing surface and the charac te r i s t ic  surface is set up for 
the nonlinear system of equations of gas dynamics.  The difference sys tem of equations, which 
approximates the original  system of differential equations on a grid,  has a second o rde r  of ac -  
curacy and is solved by the i teration sys tem proposed in [1]. The initial conditions are  de-  
termined by the method of establishment of se l f - s imi la r  flow. A number of examples are con- 
sidered.  Comparison is made with the solutions of other  authors and with experiment.  

1. Let us examine the supersonic flow over  a delta wing, assuming that the component of the velocity 
vector  of the impinging s t ream normal  to the leading edge is g rea te r  than the speed of sound and the bow 
shock wave is attached to the leading edge of the wing. The flows above and below the wing do not affect 
one another and can be examined separately.  A solution of the problem for  compress ion  flow was given 
in [2]. Let us consider  the expansion flow which develops at the upper surface of the wing if the angle of 
attack of the wing computed in the plane normal  to the leading edge becomes g rea te r  than half the angle of 
the nose c ross  section in the same plane. The region of flow will be bounded by the wing surface and the 
charac te r i s t i c  surface emerging f rom the leading edge. We will assume that the surface of the wing is 
a rb i t ra ry .  If it is conical the flow at the upper surface in the indicated region will possess  the s e l f - s imi -  
lar  proper t ies  of conical flow. 

Let us introduce a Car tes ian coordinate system with the origin at the tip of  the wing. The x axis is 
located in the ver t ical  plane of symmet ry ,  the z axis is directed along the wing span to the left, and the y 
axis is directed upward. The velocity vector of the impinging s t ream has an a rb i t ra ry  angle of attack and 
lies in the xy plane (Fig. 1). The la t ter  condition may be excluded and then the flow will be accompanied 
by slippage. The introduction of the condition of symmet ry  of the flow is done to reduce the calculations.  

We will assume that the impinging s t r eam is nonviscous and non-heat-conducting.  We will divide the 
region of flow into three parts  with the plane Q0 and the surface Ql. The plane Q0 coincides with the plane 
x --- const and the surface Ql coincides with the surface 77 = const, where ~? = z/H(t) and H = H(t) is the equa- 
tion of the leading edge of the wing (see Fig. 1). 

The solution of the problem is divided into the three problems of determining the flow in regions 1, 
2, and 3. The solution of the problem for region 1 gives the initial conditions in the plane Q0 and the solu-  
tion for region 2 gives the boundary values at the surface Q1- Assuming that the problems for regions 1 
and 2 are solved we can formulate  the boundary problem for  region 3 and give an algori thm for its numer i -  
cal solution, and then give algori thms for the problems in regions 1 and 2. 
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F ig .  1 

L e t  us  w r i t e  the  equa t ion  of  con t inu i ty  of  f low,  e n -  

e r g y .  and m o t i o n  in  m a t r i x  f o r m :  

OX , OX OX 
A i --E-~x -,- B i - ~  + C I -~-z = 0 (I.i) 

H e r e  A1, Bt ,  and C~ a r e  s q u a r e  m a t r i c e s  of  f i f th  o r -  

d e r  wi th  c o m p o n e n t s  a i j ,  b i j ,  and c i j :  

alx = bx~ : :  ca3 = P, a~,l : b2~ ~ c23 = pa 2, 

a~l -=- alo. = a s 3  = a24 : a15 = u 
b51 = b 4 ~  = b3,~ = b , z4  : b ~  = v ,  c ~  = c ,~  = c s s  = c~4 = c t s  - - - w  

a~4 = b~4 = cs'4 = I 1 9  

and the o t h e r  c o m p o n e n t s  o f  the  m a t r i c e s  a r e  z e r o ;  X is  
the  v e c t o r  co lumn with  c o m p o n e n t s  u, v, w, p, p; u, v, and 

w a r e  the  c o m p o n e n t s  of  the  v e l o c i t y  v e c t o r  a long  the x,  y ,  and z a x e s ,  r e s p e c t i v e l y ,  r e l a t i v e  to r  p 
i s  the  p r e s s u r e  r e l a t i v e  to P~o, and P i s  the  d e n s i t y  r e l a t i v e  to Po~; a2 = k ocP/P; k ~  is  the  r a t i o  of  s p e c i f i c  

hea t  c a p a c i t i e s .  

L e t  y = G(x, z) be  the  equa t ion  of  the  u p p e r  s u r f a c e  of  the  wing and y = F(x ,  z) be  the  equa t ion  o f  the  
o u t e r  c h a r a c t e r i s t i c  s u r f a c e .  At  the  s u r f a c e  o f  the  wing the  cond i t ion  of  nonflow i s  c o r r e c t .  At  the  c h a r -  
a c t e r i s t i c  s u r f a c e  the  v e c t o r  X, which  has  the  s a m e  c o m p o n e n t s  as  in the i m p i n g i n g  s t r e a m ,  is  k n o ~  whi le  
the  func t ion  F(x ,  z) i s  unknown.  

The  b o u n d a r y  p r o b l e m  for  r e g i o n  3 is  f o r m u l a t e d  as  f o l l o w s :  the  v e c t o r  X and the  func t ion  F (x ,  z) 
a r e  known at  the p l a n e  Q0 and the s u r f a c e  Q1. The s o l u t i o n  of  s y s t e m  (1.1) m u s t  be found in th i s  r e g i o n  
with the  b o u n d a r y  cond i t i ons  at  the  p l a n e  Q0 and the  s u r f a c e  Q1 g iven  at  the  s u r f a c e  of  the  wing and at  the  
c h a r a c t e r i s t i c  s u r f a c e  and with s y m m e t r y  c o n d i t i o n s  at  the  p lane  of  s y m m e t r y .  

The  so lu t i on  of  t h i s  p r o b l e m  is  c o n s t r u c t e d  n u m e r i c a l l y .  F i r s t  the  v e c t o r  X and the  func t ion  F a r e  
found in a p l ane  Q0(l) c l o s e  to Q0, then  the  p l ane  Q0 0) is  t a k e n  as  the  r e f e r e n c e  p l ane ,  and the  p r o c e s s  i s  
r e p e a t e d  up to the  t r a i l i n g  edge  of  the  wing.  

Le t  us  c o n v e r t  to new c o o r d i n a t e s  in Eqs .  (1.1) so that  r e g i o n  3 of  the  so lu t i on  has  the  f o r m  of  a p a r a l  

l e l e p i p e d :  

= TZ-~-6, z--*~l := H(t) 

In t h e s e  c o o r d i n a t e s  the  r e g i o n  o f  the  s o l u t i o n  w i l l  be c h a r a c t e r i z e d  by  the  i n e q u a l i t i e s  t > to, 0_< ~ <__ 
1, and 0 _< ~ < 1 and the s y s t e m  of  e q u a t i o n s  

c?,X ' B OX , OX A--~-  - r  - ~ -  - r  C - ~ -  = 0 

A = A1,  B = AI~.~ + B I ~ j  -t- C I ~ ,  C = A l q x  + Cl~z  

= __ i { I t  [(t - -  ~) Gt + ~Ft] - -  )IH~ [(1 - -  ~) G~ + ~F,]} (1.2) 
.',x ( t '  - -  G) 11 

1 t 
gu = -F---'Z'-d' ~z == (F - -  G) t I  1(| - -  ~2) G~ -r- .~l"d 

~I_~ = - -  I ?H , /H ,  llv = O, q~ =11H 

The a l g o r i t h m  fo r  the  n u m e r i c a l  so lu t i on  of  the  p r o b l e m  for  r e g i o n  3 c o i n c i d e s  with the  a l g o r i t h m  
f o r  the  s o l u t i o n  of  the  p r o b l e m  fo r  c o m p r e s s i o n  f low [2] with the  d i f f e r e n c e  tha t  the n e c e s s i t y  of  d e t e r m i n -  
ing the  v e c t o r  X at  the  o u t e r  b o u n d a r y  of  the  r e g i o n  f a i l s  out .  A r e c t a n g u l a r  g r i d  i s  c o n s t r u c t e d  in the 
d e s i r e d  r e g i o n  and an i m p l i c i t  d i f f e r e n c e  s y s t e m  of  s e c o n d - o r d e r  a c c u r a c y  i s  u sed .  The  so lu t i on  of  the 
s y s t e m  of  d i f f e r e n c e  equa t i ons  i s  c a r r i e d  out  f r o m  l a y e r  to l a y e r  by i t e r a t i o n .  The  a l g o r i t h m  for  th i s  p r o -  
c e s s  has  been  p r e s e n t e d  in [1-3]. 

2. The  p r o b l e m  f o r  r e g i o n  2 i s  so lved  on the a s s u m p t i o n  tha t  the s t r e a m  f lows o v e r  the  l e a d ing  edge  
as  a s l i p p i n g  wedge  and in the p lane  n o r m a l  to the  l e a d i n g  edge  the f low o b e y s  the  P r a n d t l - M e y e r  law.  
The  g a s - d y n a m i c  func t ions  a r e  c o n s t a n t  a long  r a y s .  e m e r g i n g  f r o m  the l e a d i n g  edge  o f  the  wing in th is  
p lane  and depend  only  on the  ang le  b e t w e e n  a g iven  r a y  and the h o r i z o n t a l  p l a n e .  Th i s  angle  i s  a funct ion 
of  the  c o o r d i n a t e  ~ .  
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To calculate  the gasdynamic  functions along the r ays  and consequently at the su r face  QI which they 
in te rsec t ,  the velocity vector  of the impinging s t r e a m  is reso lved  into two components .  One of them ( V ~ )  
is d i rec ted  along the tangent to the leading edge. It r e m a i n s  constant .  The o the r  (Vat o) l ies  in the plane 
normal  to the leading edge. In the l>randtl - Meyer  flow indicated it va r i e s  f rom ray  to ray .  

The wedge angle is assumed to equal the angle formed by the vec tor  Vn~ with the line of in te rsec t ion  
of the plane tangent to the wing sur face  and the plane perpendicular  to it at the leading edge. 

The gasdynamic functions on the r a y s  a re  calculated f r o m  the velocity Vn~. The resu l t an t  veloci ty 
vec tor  at the sur face  Q1 is equal to the sum of the constant  component  VT~ and the component  obtained on 

the cor responding  ray .  By th i s  means  the neces sa ry  values of the gasdynamic  functions a re  obtained for 
each l ayer  at the boundary of region 3 fo rmed by the sur face  QI- 

Since the P r a n d t l - M e y e r  flow propagates  f rom the leading edge of the wing within the s t r e a m  up to 
the cha r ac t e r i s t i c  cone issuing f rom the wing tip, for  economy in the calculat ion the sur face  Q1 (in the p a r -  
t icu lar  case  of a s t ra ight  edge,Q 1 is a plane) should be located at the line of in te rsec t ion  of the c h a r a c t e r -  
is t ic  cone with the wing sur face ,  

The flow at the upper  su r face  of the half-wing has a pronounced t r a n s v e r s e  velocity component  w 
which develops in the expansion near  the leading edge and is d i rec ted  toward the axis of s y m m e t r y  of the 
wing. At the plane of s y m m e t r y  the components  w a r r iv ing  f rom the two halves of the wing are  mutual ly  
canceUed, which r e su l t s  in the turning of the s t r e a m .  The turning and c o m p r e s s i o n  of the s t r e a m  near  the 
plane of s y m m e t r y  of the wind occur  abruptly.  The shock wave fo rmed  is smal l  and does not produce l a rge  
changes in the entropy.  It is located within the cha r ac t e r i s t i c  cone issuing f rom the wing tip and in its 
lower  par t  is no rmal  to the wing sur face .  The exis tence of this shock wave has been noted  e a r l i e r  [4, 5] 
and conf i rmed by exper imen t s  [6]. 

3. Let  us examine the p rob lem of de termining  the initial  data  at the plane Q0 for  region 1, It is solved 
by the method of de te rmin ing  the s e l f - s i m i l a r  expansion flow, just  as for  c o m p r e s s i o n  flow [2]. The algo-  
r i thm of t rans i t ion  f rom l aye r  to l aye r  f rom the prob lem for  region 3 is used repeatedly  until s e l f - s i m i l a r -  
ity is es tabl i shed with r e s p e c t  to the coordinate  t with the ass igned accuracy .  One can begin the  d e t e r m i n a -  
tion f rom a r b i t r a r y  data.  For  this purpose  it is convenient to use  the flow near  two wedges:  in the plane 
of s y m m e t r y  and in the plane normal  to the leading edge. In te rmedia te  values at points can be obtained by 
interpolat ion.  The accuracy  of the de terminat ion  can be control led with r e spec t  to individual values or  f rom 
graphs  of the functions w and p, since these  functions a re  es tabl i shed m o r e  slowly than the o the r s .  The 
quality of the solution and its de terminat ion  can also be judged f rom the behavior  of the entropy function 
S = p / p k  which mus t  be equal to unity everywhere  in the s t r e a m  (except the vicinity of the in ternal  shock 
wave). Since the entropy function does not enter  d i rec t ly  into the a lgor i thm,  it mus t  be calculated sepa ra t e ly  
for  purposes  of control .  

The fact  of the exis tence of a shock wave was not taken into account d i rec t ly  in the a lgor i thm.  The 
shock wave showed up in the r e su l t s  in a "diffuse" fo rm.  Usually four to five calculat ion points were  l o -  
cated in the zone of the shock wave. Bes ides  the " internal  v iscos i ty"  (which occu r s  because  the d i f ference  
sys t em is equivalent to the initial  equations plus the approximat ion e r r o r )  the introduction of an ar t i f ic ia l  
"v iscos i ty"  with r e s p e c t  to the coordinate  ~ with a sma l l  regulat ing p a r a m e t e r  on it and a single smoothing 
of the functions at the l aye r  contributed to an i nc rea se  in the s tabi l i ty  of the d i f ference  s y s t e m  in ca lcu la t -  
ing the discontinuity.  The p rob lem for  region 1 has an independent meaning for  wings with a conical  s u r -  
face.  
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4. C a l c u l a t i o n s  o f  the  f low o v e r  the  u p p e r  s u r f a c e  of  t r i a n g u l a r  p l a t e s  with v a r i a t i o n  in Moo, the  s w e e p -  
back  ang le  • of  the  l e a d i n g  edge ,  and the ang le  of  a t t a c k  ~ w e r e  conduc ted  on an e l e c t r o n i c  c o m p u t e r  a c -  
c o r d i n g  to the  a l g o r i t h m  d e s c r i b e d .  

In the  c a l c u l a t i o n s  the  qua l i t y  of the  so lu t i on  was  c o n t r o l l e d  with r e s p e c t  to the  v a l u e s  of  the  e n t r o p y  
funct ion and the va lue  o f  the  B e r n o u l l i  i n t e g r a l  which does  not e n t e r  into the  a l g o r i t h m .  E v e r y w h e r e  e x -  
cep t  the  r e g i o n  o f  the  shock  wave  the  e n t r o p y  funct ion  d i f f e r s  by no m o r e  than 5% f r o m  uni ty ,  whi le  the  
B e r n o u l l i  i n t e g r a l  d i f f e r s  by no m o r e  than  1% f r o m  i t s  va lue  in the  i m p i n g i n g  s t r e a m .  

The  p r e s s u r e  at  the  u p p e r  s u r f a c e  of  a t r i a n g u l a r  p l a t e  with Moo = 6, • = 60 ~ and c~ = 7 ~ c o i n c i d e s  with 
the  c a l c u l a t e d  r e s u l t s  f r o m  [5]. 

A c o m p a r i s o n  of  the  c a l c u l a t i o n  with  e x p e r i m e n t  [6] i s  shown in F ig .  2. In the  e x p e r i m e n t  a s p e c i a l  
p r o b e  i n t r o d u c e d  into the  s t r e a m  m e a s u r e d  the t o t a l  p r e s s u r e  beh ind  the d i r e c t  shock  wave  f o r m e d  in f ron t  
of  the  p r o b e  in the  f ie ld  b e t w e e n  the  u p p e r  s u r f a c e  of  a t r i a n g u l a r  p l a t e  and the  o u t e r  c h a r a c t e r i s t i c  s u r -  
f ace .  T h i s  p r e s s u r e  was  d iv ided  by the t o t a l  p r e s s u r e  behind  the d i r e c t  shock  wave  in the u n d i s t u r b e d  
s t r e a m .  A p l a t e  with )~ = 44.7 ~ and c~ = 12 ~ at  M~ = 2.94 was  used  in the  e x p e r i m e n t .  The  e x p e r i m e n t a l l y  
o b t a i n e d  va lue s  of  the  p r e s s u r e  r a t i o  ~ o v e r  the  span  o f  the  wing a r e  shown in F ig .  2 by c r o s s e s  and the 
c a l c u l a t e d  r e s u l t s  by c i r c l e s .  The  r e l a t i v e  d i s t a n c e  f r o m  the s u r f a c e  of  the  wing at  which the p r e s s u r e  
was  m e a s u r e d  a long  the span  of  the  wing was  y / x  = 0.1282, and z / x  a r e  the  h a l f - s p a n s  d iv ide d  by the b a s e  
wing chord. 

The  p o s i t i o n  o f  the  i n t e r n a l  shock  wave  was d e t e r m i n e d  in th i s  e x p e r i m e n t .  The  p r o b a b l e  p o s i t i o n  
of  the  p r o j e c t i o n  of  the  shock  wave  on  the p l ane  x = c o n s t  i s  shown in F ig .  3 by l ine  s e g m e n t s .  The  p o s i -  
t ion o f  the  shock  wave  o b t a i n e d  f r o m  the  c a l c u l a t i o n  i s  p lo t t ed  by c i r c l e s .  The c a l c u l a t e d  p o s i t i o n  of  the  
t r a c e  of  the  c h a r a c t e r i s t i c  s u r f a c e  on the p lane  x = c o n s t  is  a l so  p lo t t ed .  

Since  the  shock  wave  i s  "d i f fu se"  i n t h e  c a l c u l a t i o n s  and the  g r a p h  of  p r e s s u r e  o v e r  the  span  does  
not have  a c l e a r l y  e x p r e s s e d  " s t e p , "  the  p o s i t i o n  of  the shock  wave  was  d e t e r m i n e d  f r o m  the p r e s s u r e  
g r a p h s  as  the  poin t  c o r r e s p o n d i n g  to ha l f  the  sum of  the  m a x i m u m  and m i n i m u m  p r e s s u r e s  at  the  s t ep .  

The  i n t e n s i t y  of  the  shock  wave d e c r e a s e s  a long  the d i r e e t i o n  f rom the wing s u r f a c e  t o w a r d  the o u t e r  
c h a r a c t e r i s t i c  s u r f a c e .  At  a c e r t a i n  d i s t a n c e  f r o m  the  wing s u r f a c e  the  shock  wave d e g e n e r a t e s .  Th i s  is  
i n d i c a t e d  by the  a b s e n c e  of  a p r e s s u r e  d r o p  on the  g r a p h s  beg inn ing  with  s o m e  va lue  of  the c o o r d i n a t e  4. 

A c o m p a r i s o n  of  the  p r e s e n t  c a l c u l a t i o n s  ( c i r c l e s )  with c a l c u l a t i o n s  of  the  p r e s s u r e  e o e f f i c i e n t  Cp at  
Moo = 3, • = 45 ~ and c~ = 12 ~ f r o m  [7] ( so l id  l ine)  i s  p r e s e n t e d  in F ig .  4. A s y s t e m  of  con t inuous  c a l c u l a t i o n  
t h r ough  the d i s c o n t i n u i t y  by the  " p r e d i c t o r - c o r r e c t o r "  me thod  with a l a r g e r  n u m b e r  of  c a l c u l a t e d  po in t s  
than  in the  p r e s e n t  work  was  used  in [7]. The  d i s c o n t i n u i t y  i s  a p p r o x i m a t e d  we l l  enough by the p r o p o s e d  
s y s t e m  with a c a l c u l a t i n g  g r i d  o f  9 x 9 po in t s  wi th in  the  " c o r e "  of  the  s t r e a m  (the e o r e  i s  bounded by the  
p lane  of  s y m m e t r y  and the  p lane  Q1 l o c a t e d  on the l i ne  o f  i n t e r s e c t i o n  of  the  c h a r a c t e r i s t i c  cone  with the  
wing s u r f a c e ) .  

The  t r a c e s  on t h e  p lane  x = c o n s t  o f  the  o u t e r  c h a r a c t e r i s t i c  s u r f a c e s  and the i n t e r n a l  shock  waves  
of  a t r i a n g u l a r  p l a t e  wi th  M~ = 4 and • = 45 ~ fo r  d i f f e r e n t  a n g l e s  of  a t t a ck  a r e  sho~m in F ig .  5. It i s  s een  
t ha t  a s  the  ang le  o f  a t t a ck  i n c r e a s e s ,  the  shock  wave  a p p r o a c h e s  the  p lane  o f  s y m m e t r y  o f  the  wing.  H e r e  
c~ = 5, 10, and 15 ~ for  1, 2, and 3, r e s p e c t i v e l y .  An a n a l y s i s  of  the  change  in the  p o s i t i o n  of the  shock  wave  
on the  u p p e r  s u r f a c e  o f  t r i a n g u l a r  p l a t e s  hav ing  d i f f e r e n t  d e g r e e s  o f  s w e e p b a c k  of  the  l e a d i n g  edge  shows  
tha t  the  s w e e p b a c k  has  l i t t l e  e f f ec t  on the p o s i t i o n  of  the  shock  wave .  
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Typical  graphs  of the var ia t ion in P/poo = P and w = w / r  within the s t r e a m  ove r  the span of the 
upper  sur face  of a t r i angu la r  plate with Moo = 2, • = 45 ~ and ~ = 7 ~ a r e  presented  in Figs .  6 and 7. In the 
graphs  1, 2, 3, 4, and 5 cor respond  to } = 0, 0.5, 0.625, 0.75, and 0.875. Here  } = y / F ,  where F is the d i s -  
tance (in units of the base  chord) f rom the su r face  of the plate to the ou te r  c h a r a c t e r i s t i c  sur face .  The 
posit ion of this su r face  is shown by a dashed line in Fig. 6. It is seen f rom the graphs  that with ~ = 0.75 
the in ternal  shock wave is a l ready a lmos t  degenera ted .  This var ian t  of  the calculat ion l ies  at the l imi t  of 
applicabil i ty of  the p r e s en t  method of solution, s ince the turning of the s t r e a m  in the plane normal  to the 
leading edge is c lose  to the l imit  for  the lower  su r face  of such a wing and consequently close to depar tu re  
of the shock wave f rom the leading edge and violation of the s ta tement  of the p rob lem.  

The author thanks A. S. I I ' ina  who conducted the calculat ions and V. S. Ta ta renchik  for  advice.  
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